Solutions

1. Ans. C.

In bag A,
Number of red, green and white balls is 2, 3 and 5 respectively.
Total number of balls in bag $A=10$
So, probability of drawing two green balls
from bag $A=\frac{{ }_{2}^{3} C}{{ }_{2}^{10} C}=\frac{1}{15}$
In bag B,
Number of green balls is x
Total number of balls in bag $B=x+7$
So, probability of drawing three green balls
from bag $\mathrm{B}=\frac{{ }_{3}^{x} C}{x+7}{ }_{3} C=\frac{(x(x-1)(x-2))}{(x+7)(x+6)(x+5)}$
So, probability of drawing three green balls
from bag $B=\frac{1}{15}-\frac{7}{330}=\frac{1}{22}$
So, $\frac{(x(x-1)(x-2))}{(x+7)(x+6)(x+5)}=\frac{1}{22}$
Now, we can substitute the value of ' x ' from the options
Putting $x=5$,
$\frac{(5(5-1)(5-2))}{(5+7)(5+6)(5+5)}=\frac{1}{22}$
So, $x=5$ satisfies the equation
So option (c) is the correct answer.
2. Ans. B.

Let, the length of train $B=x$
So, the length of train $A=x-170$
Given, speed of train $A=72 \mathrm{~km} / \mathrm{hr}=20 \mathrm{~m} / \mathrm{s}$
Speed of train B $=54 \mathrm{~km} / \mathrm{hr}=15 \mathrm{~m} / \mathrm{s}$
Train A and Train B crosses each other completely in 18 sec while travelling in opposite directions
So, $(20+15)=\frac{x+x-170}{18}$
So, $35=\frac{2 x-170}{18}$
So, $35 \times 18=2 x-170$
$630+170=2 x$
$800=2 x ; x=400$
So, the length of train $B=x=400 \mathrm{~m}$
Ans, the length of train $A=x-170=400-$ $170=230 \mathrm{~m}$
A. Length of train $A=230 \mathrm{~m}$
B. Time taken by train B to cross a pole
$=15=\frac{400}{t} ; t=\frac{400}{15}=\frac{80}{3} \mathrm{sec}$
C. Time taken by train A to cross platform of
length $233 \mathrm{~m}=20=\frac{230+233}{t} ; t=\frac{463}{20} \mathrm{sec}$
D. Initial distance between both the trains = cannot be determined
So option (b) is the correct answer.
3. Ans. A.

Let the distance between X and Y be d
Time taken to travel the distance $=\mathrm{t}$
Given, speed $=\mathrm{S}$
So, $S=d / t$
If he travels the same distance with a speed ($\mathrm{S}+12$) kmph, he reaches his destination 1 hours before.
So,
$\frac{d}{s}-\frac{d}{S+12}=1$
But if he travels with a speed of ($S-4$)
kmph , he reaches 30 min late
So,
$\frac{d}{s-4}-\frac{d}{s}=\frac{1}{2}$
So, on dividing both the equation,
$\frac{\left\{\frac{d}{s}-\frac{d}{S+12}=1\right\}}{\left\{\frac{d}{s-4}-\frac{d}{s}=\frac{1}{2}\right\}}$
So,
$\frac{1}{S}-\frac{1}{S+12}=2 \times\left(\frac{1}{S-4}-\frac{1}{S}\right)$
$\frac{S+12-S}{S(S+12)}=2 \times \frac{S-S+4}{S(S-4)}$
So, we can calculate the value of S, d, t
A. Speed of Ram, who can travel the same distance in 3 hours: if distance can be calculated and as the time is given then the speed can be calculated.
B. Speed of Vikram, when he reaches 30 minutes late: as we can find the value of t and d, speed can easily be calculated.
C. Distance between X and Z, if Z lies in between X and Y : cannot be calculated as the ratio or any other information is not given.
D. Value of S : it can be calculated

So option (a) is the correct answer.
4. Ans. D.

Let the time taken by women to complete the work $=x$ hours
So, the time taken by the men to complete the same work $=x-6$

Total work done by both is same So, $3 \times M \times(X-6)=2 \times W \times X$
A. 6: 5
$3 \times M \times(X-6)=2 \times W \times X$
$18 \times(X-6)=10 \times X$
$8 X=108 ; X=\frac{108}{8}=\frac{27}{2}$
= a positive number
B. 2: 3
$3 \times M \times(X-6)=2 \times W \times X$
$6 \times(X-6)=6 \times X$
Not a positive number
C. 5: 2
$3 \times M \times(X-6)=2 \times W \times X$
$15 \times(X-6)=4 \times X$
$11 X=90 ; X=\frac{90}{11}$
= a positive number
D. 8: 5
$3 \times M \times(X-6)=2 \times W \times X$
$24 \times(X-6)=10 \times X$
$14 X=144 ; X=\frac{72}{7}$
= a positive number
So option (d) is the correct answer.
5. Ans. D.

Let $C P=100$
So, MP = 160
In $1^{\text {st }}$ case discount $=X \%$
In $2^{\text {nd }}$ case discount $=2 X \%$
A. 30,20

Profit $\%=\frac{S P-C P}{C P} \times 100$.
$30=S P-100 ; S P=130$
$X=\frac{160-130}{160} \times 100=\frac{30}{160} \times 100$
Profit $\%=\frac{S P-C P}{C P} \times 100$.
$20=S P-100 ; S P=120$
$2 \mathrm{X}=\frac{160-120}{160} \times 100=\frac{40}{160} \times 100$
Thus, is incorrect
B. 20,40

Profit $\%=\frac{S P-C P}{C P} \times 100$.
$20=S P-100 ; S P=120$
$\mathrm{X}=\frac{\frac{160-120}{160} \times 100=\frac{40}{160} \times 100}{}$
Profit\% $=\frac{S P-C P}{C P} \times 100$.
$40=S P-100 ; S P=140$
$2 \mathrm{X}=\frac{160-140}{160} \times 100=\frac{20}{160} \times 100$
Thus, is incorrect
C. 60, 30

Profit\% $=\frac{S P-C P}{C P} \times 100$.
$60=S P-100 ; S P=160$
$\mathrm{X}=\frac{160-160}{160} \times 100=\frac{0}{160} \times 100$
Profit\% $=\frac{S P-C P}{C P} \times 100$.
$30=S P-100 ; S P=130$
$2 \mathrm{X}=\frac{160-130}{160} \times 100=\frac{30}{160} \times 100$
Thus, is incorrect
D. 40,20

Profit $\%=\frac{S P-C P}{C P} \times 100$.
$40=S P-100 ; S P=140$
$\mathrm{X}=\frac{160-140}{160} \times 100=\frac{20}{160} \times 100$
Profit\% $=\frac{S P-C P}{C P} \times 100$.
$20=S P-100 ; S P=120$
$2 \mathrm{X}=\frac{160-120}{160} \times 100=\frac{40}{160} \times 100$
Thus, is correct
So option (d) is the correct answer.
6. Ans. C.

Quantity 1 -
$4.5 m^{9} n^{7} \div m^{6} n^{3} * m^{5} n^{2}$, where $m<0$ and $n<0$
$4.5 m^{3} n^{4} * m^{5} n^{2}=4.5 m^{8} n^{6}$
$=$ positive value
Quantity 2 -
$5 * X^{6} Y^{5} \div X^{2} Y^{1} \div 5.6 X^{1} Y^{2}$, where $X>0$ ad $Y<0$
$5 * X^{4} Y^{4} \div 5.6 X^{1} Y^{2}=\frac{5}{5.6} X^{3} Y^{2}$
= positive value
Quantity 3 -
$6.3 * P^{9} Q^{7} \div P^{5} Q^{2}$, where $P<0$ atrd $Q<0$
$6.3 * \mathrm{P}^{4} \mathrm{Q}^{5}=$ negative value
Q1 Q2 > Q3
@
So option (c) is the correct answer.
7. Ans. B.

A investment is half of the initial investment of B.
B's initial investment was 2400
So, A's investment $=1200$
Total investment of $A=1200 \times 12$
B withdraws his money after 4 months.
Total investment of $B=2400 \times 4$
C joins the business after B left but not in the same month. C joins with amount X
So, Time period for C can be 7 months, 6 months, 5 months, 4 months, 3 months, 2
months, 1 months
Ratio of investment can be
1200×12 : 2400×4 : X x 7
$1200 \times 12: 2400 \times 4: \times \times 6$
$1200 \times 12: 2400 \times 4: \times \times 5$
$1200 \times 12: 2400 \times 4: \times \times 4$
$1200 \times 12: 2400 \times 4: \times \times 3$
$1200 \times 12: 2400 \times 4: \times \times 2$
1200×12 : 2400×4 : X x 1
If profit of A and C is same and then which is the positive value of X
$1200 \times 12=X \times 7 ; X=2057$
$1200 \times 12=X \times 6 ; X=2400$
$1200 \times 12=X \times 5 ; X=2880$
$1200 \times 12=X \times 4 ; X=3600$
$1200 \times 12=X \times 3 ; X=4800$
$1200 \times 12=X \times 2 ; X=7200$
$1200 \times 12=X \times 1 ; X=14400$
So option (b) is the correct answer.
8. Ans. B.

Milk $=200$
Water $=40$
Ratio = 5: 1
Let ' x ' litres be removed
So milk removed $=5 / 6 x$
Water removed $=1 / 6 x$
Milk remaining $=200-5 / 6 x$
Water remaining $=40-1 / 6 x$
Let ' y ' litres of water is added

So, total water $=40-1 / 6 x+y$ Given,
$200-\frac{5}{6} x=124+40-\frac{1}{6} x+y$
$36-\frac{2}{3} x=y$
A. 30,20
$36-\frac{2}{3} x=y$
$x=30$
$36-20=16$
B. 18,24
$36-\frac{2}{3} x=y$
$x=18$
$36-12=24$
C. 24,20
$36-\frac{2}{3} x=y$
$x=24$
$36-16=20$
D. 36,16
$36-\frac{2}{3} x=y$
$x=36$
$36-24=12$
So option (b) is the correct answer.
9. Ans. B.

The pattern is
1
$1 \times 1+2=3$
$3 \times 2+3=9$
$9 \times 3+4=31$
$31 \times 4+5=129$
Similarly,
5
$5 \times 1+2=7$
$7 \times 2+3=17$
$17 \times 3+4=55$
$55 \times 4+5=255$
So, the missing number is 225
So option (b) is the correct answer.
10. Ans. B.

The pattern is

4
$4 \times \frac{1}{2}=2$
$2 \times 1=2$
$2 \times \frac{3}{2}=3$
$3 \times 2=6$
$6 \times \frac{5}{2}=15$
$15 \times 3=45$
$45 \times \frac{7}{2}=\frac{315}{2}$
315
$\frac{315}{2} \times 4=630$
$630 \times \frac{9}{2}=2835$
So, the $10^{\text {th }}$ term is 2835
So option (b) is the correct answer.
11. Ans. C.

Total employees in deptt. B in the year 2016,
2017 and 2018 is $2 x, 3 x$ and $5 x$.
According to the question,
$[2 x * 50 / 100+3 x * 70 / 100+5 x *$
$40 / 100] / 3=1700$
$(x+21 x / 10+2 x)=5100$
$(10 x+21 x+20 x)=51000$
$51 x=51000$
X=1000
Total employees in deptt. B in the year 2017
$=3 * 1000=3000$
12. Ans. D.

Let us take total executives in the year 2016
be x
According to the question,
$(x+x+600+x+200)=9800$
$\Rightarrow x=3000$
Total executives of deptt. C in the year 2017
$=x+600=3000+600=3600$
Total employees in deptt. C in the year 2017
$=3600 / 40 * 100=9000$
13. Ans. B.

ATQ,
$0.6 \mathrm{C}=0.4 \mathrm{~A}$
$\mathrm{C}=\mathrm{A} / 1.5$
\& $0.4 \mathrm{~B}=2 \times 0.5 \mathrm{~A}$
$\Rightarrow B=2.5 A$

So,
$\frac{B-C}{C} \times 100=\frac{2.5 A-A / 1.5}{A / 1.5} \times 100=275 \%$
14. Ans. C.

ATQ,
Number of times the reservoir needs to be

filled=

$\frac{30 \text { (no of flats) } \times 25 \text { (consumption per hour per flat) } \times 24 \text { (hours) } \times 30 \text { (days) }}{60000(\text { Reservoir capacity) }}=9$
15. Ans. B.

ATQ, 45(flats) $\times 100$ (hrs) $\times x$ (consumption
per flat per hour) $=60000$ (Reservoir
capacity)
$\Rightarrow \mathrm{x}=40 / 3(\mathrm{ltr} / \mathrm{hr})$
So,
$\frac{25-\frac{40}{3}}{\frac{40}{3}} \times 100=87 \frac{1}{2} \%$
16. Ans. A.

ATQ,
$\frac{40}{3}$ (consumption per hour per flat) $\times 125$ (hours) $\times \mathrm{x}($ flats $)=60000$
$\Rightarrow \mathrm{x}=36$
17. Ans. A.

Increased reservoir capacity=1.2
$\times 60000=72000$
Filled reservoir $=72000 \times 0.8=57600$
So, ATQ
7 (times) $\times 57600$ (capacity) $=24$ (hours per day) $\times 28$ (days) $\times 24$ (consumption per hour per flat) $\times x$ (no. of flats)
$\Rightarrow \mathrm{x}=25$
$\Rightarrow \%$ flats occupied $=\frac{25}{60} \times 100=41 \frac{2}{3} \%$
18. Ans. B.

Q I: $\frac{A \times 2 \times R}{100}+20=\frac{A \times 2 \times(R+5)}{100}$
$\Rightarrow A=200$
Q II: $B\left(1+\frac{10}{100}\right)^{2}-B+68=250\left(1+\frac{2 थ}{10 \Theta}\right)^{2}-250$
$\Rightarrow B=200$
Q I: $\frac{C \times 2 \times 10}{100}+2.5=C\left(1+\frac{10}{100}\right)^{2}-C$
$\Rightarrow C=250$
Clearly, $\mathrm{QI}=\mathrm{QII}<\mathrm{QIII} \Rightarrow \mathrm{C})$, B)
19. Ans. D.

Clearly, Amit can do the work in $=\frac{24 \times 60}{36}$
=40 days
\& Bhuvan can do the work in $=\frac{20 \times 60}{40}=60$ days
Now, Work completed by Amit $=1 / 4$
\& Work completed by Bhuvan
$=\frac{1}{3} \Rightarrow$ Work done by Chetan $=5 / 12$
\Rightarrow Chetan completes work in \boldsymbol{X} days $=\frac{5}{12} \times 60=25$ days
Q I: $\frac{20 \times 25}{45}=100 / 9$ days
Q II: $\frac{30 \times 30}{60}=15$ days
Q III: 25 days
Clearly, QI<QII<QIII \Rightarrow B), B)
20. Ans. E.

If external breadth of park is ' p ' mts, Then, External length of park $=(p+4) \mathrm{mts}$ So, sides of internal rectangle are p and $p-4$ mts.
Now ATQ,
$p(p+4)=4 / 3(p(p+4)-p(p-4))$
$\Rightarrow p=\frac{20}{3} \mathrm{mts}$
Length of park $=\frac{20}{3}+4=\frac{32}{3}$
Breadth of park
$=\frac{20}{3} \Rightarrow$ Area of Park can be calculated.
Side of square
$=\frac{20}{3}=$
Area of Path,inscribed circle \& Square formed by decreasing length of rect,
can be calculated.
Clearly, all given options can be calculated.
21. Ans. D.

Statement I:

The difference between monthly savings of A in November and April is 20% of A's monthly income in April
Monthly income of A in April be Rs. a \& Monthly income of A in November be Rs. b
Monthly savings of A in April $=a \times 70 / 100=$ 7a/10

Monthly savings of A in November = $b \times 40 / 100=4 b / 10(7 a / 10-4 b / 10)=$ 20/100×a

Statement II:

Monthly savings of B in November is 40\% of monthly savings of A in April
Monthly income of A in April be Rs. a
Monthly income of B in November be Rs. c
Monthly savings of A in April $=a \times 70 / 100=$ 7a/10
Monthly savings of B in November $=$ $40 / 100 \times 7 \mathrm{a} / 100$
So, From the statement I and II, we cannot find the answer of the given question.
22. Ans. E.

Monthly income of C in April be Rs. x
Monthly income of C in November be Rs. y
Monthly expenditure of C in April $=x^{*} 60 / 100$
Monthly savings of C in April $=x * 40 / 100$
Monthly expenditure of C in November $=$
y*75/100
Monthly expenditure of C in November = y*25/100
Statement I: The difference between the monthly savings of C in April and November is 12000.
$x * 40 / 100-y^{*} 25 / 100=12000$
$40 x-25 y=1200000$--- (1)
Statement II: The difference between the monthly expenditure of C in April and November is 10000.
$x^{*} 60 / 100-y * 75 / 100=10000$
$60 x-75 y=1000000$---- (2)
From the statement I and II, we can find the monthly income of C in April and November.
23. Ans. E.

Statement I: D's income in November is 30% more than the C's income in April.
D's income in November $=130 / 100$ * C's income in April
Statement II: C's monthly savings in April is Rs. 4800 which is 40% of his monthly income.
C's monthly savings in April $=4800$
C's monthly income in April $=4800 / 40 * 100$ = 12000
From Statement I and II, we can find the savings of D in November

